### Blogroll

### Archives

- August 2011 (16)
- June 2011 (5)
- May 2011 (30)
- April 2011 (4)

### Categories

Absolute Convergence Algebra Analysis Cauchy Center Compact Comparison Test Continuity Countable Cyclic Dense Differentiable Field Group Integral Domain Linear Operator Math MVT Order Principal Ideal Riemann Integrable Sequence Sequence of Functions Series Series of Functions Squeeze Theorem Topology Uncategorized Uniform Continuity Uniform Convergence

# Category Archives: Differentiable

## UIC Master’s Exam- Fall 2007 R2

Problem Statement: is continuous on . Given that (a) prove has continuous derivative on (Hint: start with the change of variable u=x+t). (b) Given and show that there exists a such that for every . Solutions: (a)Proof: First let us start … Continue reading

## Rudin: Ch. 5 #4

Problem Statement: If where are real constants, prove that has at least one real root between and . Proof: Consider the polynomial on . Then it follows that and which equals by our assumption. Furthermore, since is a polynomial with real coefficients … Continue reading

Posted in Analysis, Differentiable, Math, MVT
Leave a comment

## April 2009 #2

Problem Statement: Suppose is a real-valued differentiable function such that for every . Show there is at most one such that . Proof: Suppose to the contrary that there are two such values such that and . Wlog assume that . Since … Continue reading

Posted in Analysis, Continuity, Differentiable, Math, MVT
Leave a comment

## Fall 2004 #4

Problem Statement: Let be a continuous function on such that is differentiable at all points of except possibly at a single point . If exists show that exists and that . Proof: by definition. Consider: . Applying the definition stated above we … Continue reading

Posted in Analysis, Differentiable
Leave a comment

## Spring 2004 #5

Problem Statement: Let be differentiable. Let such that and . If is between and then there exists such that . Proof: Wlog assume . Fix . Define . Then . Note that and since . and so for sufficiently close to , … Continue reading

Posted in Analysis, Compact, Continuity, Differentiable, Math
Leave a comment

## Spring 2008 #2

Problem Statement: Let be a twice differentiable real valued function defined on . Suppose that with and . Prove there exists a such that . Proof: Since is twice differentiable on we know that is differentiable on , which implies that … Continue reading

Posted in Analysis, Continuity, Differentiable, Math, MVT
Leave a comment

## May 1999 #5

Problem Statement: Let be a real valued differentiable function on whose derivative is bounded on . Show that converges. Proof: First note that for every . Furthermore we know that is bounded so there exists a real number such that for every … Continue reading

Posted in Analysis, Cauchy, Differentiable, Math, MVT
Leave a comment